前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇經濟應用數學論文范文,相信會為您的寫作帶來幫助,發現更多的寫作思路和靈感。
在經濟決策科學化、定量化呼聲日漸高漲的今天,數學經濟建模更是無處不在。如生產廠家可根據客戶提出的產品數量、質量、交貨期
一、數學經濟模型及其重要性
數學經濟模型可以按變量的性質分成兩類,即概率型和確定型。概率型的模型處理具有隨機性情況的模型,確定型的模型則能基于一定的假設和法則,精確地對一種特定情況的結果做出判斷。由于數學分支很多,加之相互交叉滲透,又派生出許多分支,所以一個給定的經濟問題有時能用一種以上的數學方法去對它進行描述和解釋。具體建立什么類型的模型,既要視問題而定,又要因人而異。要看自己比較熟悉精通哪門學科,充分發揮自己的特長。
數學并不能直接處理經濟領域的客觀情況。為了能用數學解決經濟領域中的問題,就必須建立數學模型。數學建模是為了解決經濟領域中的問題而作的一個抽象的、簡化的結構的數學刻劃。或者說,數學經濟建模就是為了經濟目的,用字母、數字及其他數學符號建立起來的等式或不等式以及圖表、圖象、框圖等描述客觀事物的特征及其內在聯系的數學結構的刻劃。而現代世界發展史證實其經濟發展速度與數學經濟建模的密切關系。數學經濟建模促進經濟學的發展;帶來了現實的生產效率。在經濟決策科學化、定量化呼聲日漸高漲的今天,數學經濟建模更是無處不在。如生產廠家可根據客戶提出的產品數量、質量、交貨期、交貨方式、交貨地點等要求,根據快速報價系統與客戶進行商業談判。
二、構建經濟數學模型的一般步驟
1.了解熟悉實際問題,以及與問題有關的背景知識。2.通過假設把所要研究的實際問題簡化、抽象,明確模型中諸多的影響因素,用數量和參數來表示這些因素。運用數學知識和技巧來描述問題中變量參數之問的關系。一般情況下用數學表達式來表示,構架出一個初步的數學模型。然后,再通過不斷地調整假設使建立的模型盡可能地接近實際,從而得到比較滿意的結論。3.使用已知數據,觀測數據或者實際問題的有關背景知識對所建模型中的參數給出估計值。4.運行所得到的模型。把模型的結果與實際觀測進行分析比較。如果模型結果與實際情況基本一致,表明模型是符合實際問題的。我們可以將它用于對實際問題進一步的分析或者預測;如果模型的結果與實際觀測不一致,不能將所得的模型應用于所研究的實際問題。此時需要回頭檢查模型的組建是否有問題。問題的假使是否恰當,是否忽略了不應該忽略的因素或者還保留著不應該保留的因素。并對模型進行必要的調整修正。重復前面的建模過程,直到建立出一個經檢驗符合實際問題的模型為止。一個較好的數學模型是從實際中得來,又能夠應用到實際問題中去的。
三、應用實例
商品提價問題的數學模型:
1.問題
商場經營者即要考慮商品的銷售額、銷售量。同時也要考慮如何在短期內獲得最大利潤。這個問題與商場經營的商品的定價有直接關系。定價低、銷售量大、但利潤小;定價高、利潤大但銷售量減少。下面研究在銷售總收入有限制的情況下.商品的最高定價問題。
2.實例分析
某商場銷售某種商品單價25元。每年可銷售3萬件。設該商品每件提價1元。銷售量減少0.1萬件。要使總銷售收入不少于75萬元。求該商品的最高提價。
解:設最高提價為X元。提價后的商品單價為(25+x)元
提價后的銷售量為(30000-1000X/1)件
則(25+x)(30000-1000X/1)≥750000
(25+x)(30-x)≥750[摘要]本文從數學與經濟學的關系出發,介紹了數學經濟模型及其重要性,討論了經濟數學模型建立的一般步驟,分析了數學在經濟學中應用的局限性,這對在研充經濟學時有很好的借鑒作用。即提價最高不能超過5元。
四、數學在經濟學中應用的局限性
經濟學不是數學,重要的是經濟思想。數學只是一種分析工具數學作為工具和方法必須在經濟理論的合理框架中才能真正發揮其應有作用,而不能將之替代經濟學,在經濟思想和理論的研究過程中,如果本末倒置,過度地依靠數學,不加限制地“數學化很可能經濟學的本質,以至損害經濟思想,甚至會導致我們走入幻想,誤入歧途。因為:
1.經濟學不是數學概念和模型的簡單匯集。不是去開拓數學前沿而是借助它來分析、解析經濟現象,數學只是一種應用工具。經濟學作為社會科學的分支學科,它是人類活動中有關經濟現象和經濟行為的理論。而人類活動受道德的、歷史的、社會的、文化的、制度諸因素的影響,不可能像自然界一樣是完全可以通過數學公式推導出來。把經濟學變為系列抽象假定、復雜公式的科學。實際上忽視了經濟學作為一門社會科學的特性,失去經濟學作為社會科學的人文性和真正的科學性。
2.經濟理論的發展要從自身獨有的研究視角出發,去研究、分析現實經濟活動內在的本質和規律。經濟學中運用的任何數學方法,離不開一定的假設條件,它不是無條件地適用于任何場所,而是有條件適用于特定的領域在實際生活中社會的歷史的心理的等非制度因素很可能被忽視而漏掉。這將會導致理論指導現實的失敗。
3.數學計量分析方法只是執行經濟理論方法的工具之一,而不是惟一的工具。經濟學過分對數學的依賴會導致經濟研究的資源誤置和經濟研究向度的單一化,從而不利于經濟學的發展。
4.數學經濟建模應用非常廣泛,為決策者提供參考依據并對許多部門的具體工作進行指導,如節省開支,降低成本,提高利潤等。尤其是對未來可以預測和估計,對促進科學技術和經濟的蓬勃發展起了很大的推動作用。但目前尚沒有一個具有普遍意義的建模方法和技巧。這既是我們今后應該努力發展的方向,又是我們不可推卸的責任。因此,我們要以自己的辛勤勞動,多實踐、多體會,使數學經濟建模為我國經濟騰飛作出應有的貢獻。
1.試論如何做好高職數學與本科數學教學的銜接
2.數學建模教學是應用型本科數學人才培養的有效途徑
3.將數學建模思想融入應用型本科數學教學初探
4.應用型本科數學實驗課程改革的探討
5.以數學建模為突破口,促進應用型本科數學課程改革
6.淺談國內外本科數學公共基礎課的實踐教學
7.獨立學院工科類本科數學教學淺談
8.應對基礎教育課程改革的新疆高師本科數學專業課程設置策略
9.本科數學專業常微分方程教學改革與實踐
10.基于大眾數學理念的中職起點本科數學改革
11.應用型本科數學教師教學素養的培養與思考
12.應用型本科大學數學課程的教學定位分析
13.河南高師本科數學專業學生就業形勢及對策
14.應用型本科數學類專業職業技能培養研究
15.新課標體系下高師本科數學分析教學所面臨的問題和所采取的措施
16.應用型本科高校數學與應用數學專業建設的探索與實踐
17.工程教育模式下本科數學教學評價的探索
18.應用型本科人才的數學素質和創新意識教育的研究與實踐
19.基于高中課改形勢下的地方本科院校高等數學教學改革
20.將數學建模思想融入大學本科數學基礎課程
21.本科數學教學與強化素質教育研究
22.“問題驅動法”在新建應用型本科數學教學中的應用
23.對本科數學教學改革的思考與對策
24.應用型本科工科數學的現狀與教學改革探析
25.應用型本科大學數學課程的教學定位分析
26.以就業為導向的數學本科專業學生創新能力的培養
27.淺談工科本科數學教育改革
28.獨立學院實現應用型本科數學教學的研究
29.新建地方院校金融數學專業本科人才培養探討
30.對地方本科院校數學專業應用型人才培養的探索與實踐
31.普通本科院校文科數學素質教育的對策探究
32.新建本科院校本科《高等數學》學習狀況調查報告
33.“以學生為中心”的本科數學教學范式研究
34.應用型本科高等數學教學改革的研究
35.新建本科院校特色專業建設與改革探索——以凱里學院數學與應用數學省級特色專業為例
36.應用型本科大學數學課程考試模式研究
37.民辦應用型本科數學課程改革初探
38.應用型本科數學基礎課程群建設的探討
39.應用本科院校高等數學走班制分層次教學探究——以河南科技學院為例
40.本科數學教學應提倡“研究性學習”
41.民辦本科《數學分析》課程的實踐與認識
42.構建高師小學教育本科專業數學類課程的若干思考
43.高校應用型本科數學建模隊員培訓與選拔方式的探析
44.應用教學型本科數學實踐課程教學模式探討
45.新升本科數學專業(師范)課程設置的特點與啟示
46.新建本科院校文科數學教育的問題與對策研究
47.工科類本科數學基礎課程教學基本要求
48.高師本科數學分析教學改革的研究與實踐
49.應用型本科高校金融數學專業建設的思考
50.本科數學專業常微分方程教學改革的探討
51.本科數學專業高等代數課程教學改革初探——“推拉”教學法的嘗試
52.應用型本科院校數學建模教學與創新
53.應用型本科院校數學教學改革
54.大學本科數學教學應重視的幾個問題
55.論本科小學數學教師教育課程的整合
56.地方本科院校公共數學類課程的教學改革與實踐
57.應用型計算機本科中離散數學課程目標定位與課程改革的探討
58.應用型本科院校數學與應用數學專業定位與課程設置研究
59.數學建模在應用型本科人才培養中的實踐與探索
60.應用型本科高等數學教學與“CDIO”教學改革初探
61.應用型本科院校高等數學教學存在的問題與改革策略
62.新建本科院校計算機專業離散數學教學研究
63.本科層次小學教育專業數學課程設置的本源性分析
64.農林本科數學教育的現狀與存在問題分析
65.提高一般本科院校學生學習數學積極性初探
66.數學建模思想融入應用型本科院校高等數學課程教學的途徑
67.應用型本科高等數學課程教學改革的探究
68.山東省高師專科升本科《數學分析》試題的研討
69.一般本科院校《大學數學》教學現狀分析與改革思路研討
70.關于提高數學類專業本科畢業設計質量的研究
71.西藏高校數學類本科專業設置及課程體系建設研究——以西藏大學為例
72.整合數學類課程,提高小學教育專業本科學生的數學素養
73.理工科院校數學本科專業學生就業初探
74.應用型本科院校高等數學課程現狀與對策
75.工程應用型本科類高校數學通識課現狀分析及其改革途徑探討
76.應用型本科院校大學數學教學改革的探索
77.新建本科高校數學教學改革的探索與實踐
78.地方本科院校擴大數學建模競賽受益面的探索
79.新升本科院校數學分析教學的幾點思考
80.本科院校數學實驗室管理研究
81.大學本科經濟數學教學現狀及相關思考
82.應用型本科院校高等數學課程的教學改革
83.應用技術型本科院校高等數學教材的建設模式研究與實踐
84.工程數學教學如何適應技術應用型本科教育
85.新建本科院校安全工程專業數學課程教學改革探討
86.關于國外高校經濟學本科數學基礎課程設置的探討
87.四年制高職本科高等數學課程體系的研究
88.概率統計在數學建模中的應用——以2012年全國大學生數學建模競賽(本科組)A題為例
89.高等數學思想在本科畢業設計中的運用研究
90.應用型本科數學實驗課程教學改革探索
91.新建本科院校考研數學的現狀與策略研究
92.應用型本科院校高等數學教學若干問題的思考
93.數學史:探求真理的“心”路歷程——大學本科數學史教材改革初探
94.地方本科院校數學與應用數學專業課程群建設的理論與實踐
95.應用型本科院校高等數學教學改革研究
96.“產學研”合作視域下高校實踐教學體系的構建——以宿州學院數學類本科專業為例
97.與時俱進構建人才培養新模式——東華理工學院《數學與應用數學專業本科人才培養計劃(06版)》解讀
98.地方一般本科院校數學建模活動推廣模式探討
99.本科小學教育專業學生數學素養的培養研究
100.新建本科院校數學與應用數學專業實踐教學體系探索
101.應用型本科高校大學數學分層次教學改革探討
102.基于職業創新能力培養的數學課程構建——以高職本科分段鐵道供電專業為例
103.大學本科數學考試模式改革探索與思考
104.淺論下輪工科本科數學教材編寫的原則
105.應用型本科院校中高等數學教學體會
106.應用型本科數學建模課程教學改革探索
107.應用型本科高校高等數學課程優化教學新探
108.應用型本科院校數學課程教學改革與建設探索——以銀川能源學院為例
109.高等本科院校學生數學建模能力的調查與分析
110.本科院校工科高等數學軟件實驗的改革
111.河南省高師數學本科專業學生就業探微
112.新建本科院校高等數學課程中實施分層教學的探索——以安陽師范學院為例
113.民族地區新升本科院校高等數學分層教學模式研究
Abstract: After the substantial reform of mathematics in high school, and the emerging of probability and statistics in mathematics textbook of high school, how does engineering mathematics meet the requirements of math reform and social progress? It is a problem that engineering mathematics must face to reform probability statistics teaching and course system. The article discussed the influence of mathematics reform in high school, analyzed the status quo that probability statistics teaching is out of keeping with mathematics reform in high school, found out the reasons that students widely believed that it is relatively difficult, and put forward the content and target of probability statistics teaching reform.
關鍵詞:高中課改;概率統計;教學改革
Key words: curriculum reform in high school;probability and statistics;teaching reform
中圖分類號:G42文獻標識碼:A文章編號:1006-4311(2011)22-0186-02
1背景與現狀
工程數學是高等數學在經濟學、機械、電子等專業中的應用,即實際研究中能用得上的數學,它是工程、經濟與數理統計相互交叉的一個新的跨學課領域,通常包括:概率、統計、矩陣等。在當前,進行高職高專,工程數學課程改革勢在必行,刻不容緩,我們認為,其背景與現狀是基于以下幾個方面:
中學數學課程,經歷了多次從學制到教材的的改革試驗,近年來正逐步推行高中的國家課程標準,2008年全國大部分省市在進行新標準課程試驗,今年的高考大綱以體現了這方面的要求。課程改革力度非常之大,會對概率統計教育產生比較大的影響。其主要表現在:增加了微積分、概率與統計的內容,讓中學生初步具有分析處理隨機問題及數據的能力,使學生解決問題的能力得到較全面培養,從全面提高全民素質方面予以肯定。
1.1 高中階段的概率統計內容高中階段的概率統計教學跨越了兩個學期,主要教學內容有:隨機現象與隨機事件、概率的統計定義及其性質、概率的古典定義、特殊概率加法公式(互不相容事件),相互獨立事件的概率乘法公式,n次獨立重復試驗,離散型隨機變量及離散型分布列,兩點分布、二項分布、泊松(ppisson)分布、正態分布,離散型隨機變量的數字特征,抽樣方法,教學時數40個左右。下面是陜西省2008年理科的一道高考試第18題:
18.(本小題滿分12分)
某射擊測試規則為:每人最多射擊3次,擊中目標即終止射擊;第i次擊中目標得4-i(i=1,2,3)分,3次未擊中目標得0分,已知某射手每次擊中目標的概率0.8,且各次射擊結果會不影響。
(Ⅰ)求該射手射擊兩次的概率。
(Ⅱ)求該射手恰好射擊?孜的分布列及數學期望。
解:(Ⅰ)設該射手第i次擊中目標為Ai(i=1,2,3),則P(Ai)=0.8,p(■i)=0.2 p(Ai■i)=p(Ai)p(■i)=0.8×0.2=0.16
(Ⅱ)?孜可能取的值為0,1,2,3,?孜的分布列為表1所示。
E(?孜)=0×0.008+1×0.032+2×0.16+3×0.8=2.752
上述試題已表明:高考試題已考察學生掌握隨機事件及其概率,離散型隨機變量及其數字特征。由于積分沒有向高中數學的下放,因而沒有連續型隨機變量及其分布。沒有提及的是:事件的概率加法公式,并條件概率,全概率公式、貝葉斯公式,均未涉及,既是古典概率計算,也是一知半解,似是而非,主要表現在:
一是學生進入大學后,輕視概率統計學習,有不少學生不認真聽課甚至缺課,但到后繼課程(如統計)中需要數理統計知識時感覺非常困難;二是學生帶來許多似是而非甚至錯誤的概念,使得老師不得不花更多的時間與精力去糾正,效果不甚理想;三是學生將所有的概率都歸結為古典概率,沒有掌握古典概率這個模型的實質:有限個結果,每個結果是等可能的,在他們眼里任何事件概率都可用百分比表示,全概率公式的概率分解思想非常重要,但好多學生不去領悟這個思想,卻糾纏于為什么不用古典概率計算等等。需要糾正,進一步拓廣,加深。
1.2 教學觀念陳舊,教學方法落后我國許多教師均為數學專業畢業,他們習慣于數學的邏輯性、嚴密性、系統性,使一門很具特色的課程變成抽象的符號語言集成,一味追求計算的技巧或結果,例題習題多且難,教學直觀與形象敘述很少,不少學生對數學符號、公式、數據采取回避策略,結果學生“怕數學”,“頭疼數學”,怕繁難的數學計算和深奧的邏輯推理,海量的數據,往往忽略數學的應用性。陳舊的數學觀念,導致培養出的人才規格的降低,高分低能低分低能現象嚴重。我們必須正視現實,破除陳舊,樹立應用性數學教育觀。教學方法是關系到教學效果的重要因素,對概率統計而言,教學方法的改進尤為重要。我們現在采取的“數學知識例題說明練習”的講授形式,教學手段單一,實行“填鴨式”教學,只注重理論教學,缺少實踐試驗環節,缺乏主動性和創造性。強調數學結論而忽視思想方法的交待。概率統計的重點應放在概念的產生背景或使用方法的介紹,與實際脫鉤,如分位數常用來表示分布兩側的尾部概率,很直觀,它是構成置信區間和拒絕域必不可少的知識點,它是統計學的支撐點,很多沒有提及或提的不夠到位,例題與練習很少;西方國家的教學比較重視概率統計思想和方法的交待,具有啟發性。運用啟發式教學方法,啟發學生主動學習,主動思考,主動實踐,教給學生以獵槍而不是獵物。
1.3 教材編寫過時現有的概率論教材較少考慮與中學教材的銜接及相鄰課程的協同,幾乎是從零開始,一直是大概率小統計,小而全,一是造成高職的工程數學內容與高中的數學內容在低層次重復;重概率輕統計,大多數教材重在介紹概率基礎內容,數理統計內容一直處于輔助的位置,從應用的層面上講,是本末倒置的,統計學中最實用的是相關分析與回歸分析,我們教材在這方面筆墨很少,大大降低了統計的實用性,對概率統計的思想、方法教材所起的作用沒有達到預期;概率統計在經濟領域的最新應用成果,如二項分布在經濟管理中的應用,損失分布在保險中的應用,期望、方差在風險決策或組合投資決策方面的應用,教材中沒有任何反映,哪怕是提及一句也沒有做到,補充上述成果,一定能開拓學生應用概率統計的視野,激發學生學習的動力。
綜上所述,無論是從時展的要求,還是適應中學課程改革需要,我們的概率統計教育已經到了非改不可的程度。我們必須擔負起歷史賦予我們的責任,抓住歷史機遇,實行概率統計教育改革。
2概率統計教育改革的內容與目標
2.1 增加統計的比重,少理論多應用近幾年來,基于數據庫計算網絡廣泛應用,加上使用先進數據自動生成及人工采集,人們所擁有數據量急劇增大,海量數據的數據背后隱藏著許多重要信息,這就迫切需要科技人員需要面對大量數據進行統計分析處理,挖掘海量數據中的關系與規則,根據現有的數據預測未來的發展趨勢,數據急劇上升與數據分析方法滯后之間的矛盾愈來愈突出;統計學是一門數據分析的課程,是從數據中提取有用信息,實踐證明是很有效地,以應用、數據、實際為背景,迫切需要在教學中加大數理統計的比重,熟悉不同的數據及各種不同特點的數據處理,即直觀意義理解解釋計算機輸出的結果。為后面對實際打下堅實的基礎。要介紹不同類型的數據,以及數據的采集、診斷及相關試驗的設計,并重點介紹描述性的統計方法,即利用圖像及數表對數據進行粗加工的簡單易行的方法。它可以使學生在較短的時間內對數據所提供的信息有一縱觀的了解。要由目前重概率輕統計逐步向概率與統計并舉,最終實現重統計輕概率過度。重點介紹統計中最實用的回歸分析及相關分析。
概率統計的特點是應用性強,對概率部分要適當壓縮,統計部分要以淡化理論,掌握概念,了解原理,強化應用,深入淺出,注重概念,加強應用能力培養,采用直觀和形象教學,對于一些抽象的數學概念、理論,采用有趣的例子直觀、具體、形象的鋪墊,引導學生理解消化。
2.2 注重方法,凸現思想數學思想方法是數學的精髓,在教學中要深入淺出,強調概率統計思想的內涵與應用,不追求公式的推導與形式邏輯思維的推理,取而代之是應用中不斷使用公式及運用形象思維和直觀判斷,引導學生挖掘隱含概率統計學知識中的數學思想及方法,例如:小概率事件在個別試驗中不發生原理思想的滲透,此原理在工農業生產及日常生活中有著廣泛的應用,國外教科書上說:“顯著性水平?琢通常是一個經濟決策,它建立在發生錯誤的代價有多大的基礎上;正態分布的“3?滓-原則”,假設檢驗基本思想的提出,都是本原理的重要應用;替代原理思想的滲透,矩法估計的實質就是利用子樣的經驗分布和子樣矩替換母體的分布和母體矩,我們稱之為替換原理.無偏估計的思想,“等價交換是在平均中實現的”;假設檢驗的思想:在假設檢驗中一般只給你一個樣本,要想肯定假設H0成立是不充分不可能的,但用一個樣本否定H0成立是理由充分的;一般是把“不能輕易否定的命題”作為原假設,把“需要驗證的命題”作為備擇假設。什么是“不能輕易否定的命題”呢?一般來說原有的理論、原有的看法、原有的狀態、或者說是那些保守的、歷史的、經驗的,在沒有充分證據證明其錯誤前總是被假定為正確的,作為假設,處于被保護的位置,而那些猜測的、可能的、預期的取為備擇假設,假設的目的就是用事實驗證原來的理論、看法、狀況等是否成立,或更明確的說用事實原假設。沒有被拒絕的假設不一定就是正確假設;模型化方法――概率分布模型,檢驗模型等,一個分布,就是一模型,讓學生多掌握一些個分布,對于應用是有好處的。它引導學生用類比思維、逆向思維、歸納思維的方法,從概率模型、統計模型的實際背景去分析,思考得出的結論,與教材中的結論比較,可有意外的收獲。教學生以正確的思想和方法,無疑就是交給學生一把打開知識大門的鑰匙。
2.3 增設數理統計試驗著名的數學家歐拉說“數學這門課,需要觀察,需要試驗” ,概率與數理統計這門課中,有許多隨機試驗,很多統計規律大多是從試驗中得來的,讓同學親自做試驗,可以通過現代化的計算機技術,掌握獨立使用各種先進的計算工具和信息的傳播技術探索解決實際問題的新思路新途徑,不僅能體驗探索隨機試驗的許多規律,還能培養他們研究、觀察、歸納、概括、總結的能力,加深對概率與數理統計知識的理解,這樣能極大的發揮學生學習的主觀能動性,激發學習的熱情和再發現的欲望,便于自主學習,提高學習效率。我們使用EXCEL作數據分析與處理的平臺,讓學生采集一些數據,進行數據管理,并進行數據質量分析,在計算組合數、平均數、標準差、平方和分解、相關系數、回歸系數等,這些計算使用EXCEL都可以完成;這樣既增強了學生的動手能力又有一種成就感,收到了很好的效果。
2.4 進行教學內容的改革與實跋,編寫富有特色的概率統計教材教材應從實際出發,以應用和易于接收為目的,在引入概念、定理、公式,應闡明概念、定理、公式提出的過程和背景,從問題出發,引人入勝,使學生用較容易的理解和掌握新的知識和規律,激發學生的興趣;針對現有教材存在的問題,要注重直觀性與形象化的教學,習題的配備大多要淺顯易做,以應用為主;盡量縮減概率論部分,淡化繁瑣的理論推導,加強數理統計部分,溶進現代數學的思想、觀點、方法,主要使學生掌握數理統計的思想與方法,除了對參數估汁、假設檢驗、相關分析與回歸分析等經典統計方法的介紹外,針對工科學生普遍感到該課程概念抽象難以理解,內容能聽懂,習題比較難做的現象,我們總結了多年的教學經驗,編寫了《應用數學》(科學出版社出版),幫助學生學好概率與數理統計課程:對每一章部分給出了本章小結,使學生理清思路,掌握脈絡,明確要求。教材是知識的載體,方法與思想的集合,數理統計教材,只有面向實際,面向應用,緊跟時代的步伐,為師生服務,才能真正得到廣大師生的青睞。
總之隨著高等教育規模的不斷擴大,及社會需求的不斷增加,概率統計教育教學面臨著許多新的課題和挑戰,我們要打破陳規,大膽創新,勇于實踐,遵循規律,不斷在教學實踐中探索行之有效的教學方法,就會在概率統計教學方面取得更好的效果。
參考文獻:
[1]茆詩松.概率論與數理統計的回顧與發展.大學數學論文集2007,(3).
[2]劉群孫,鐘波.將數學建模思想融入“概率統計”教學中[J].大學數學,2006.
[3]王艷梅.對財經類非統計專業教材編寫的思考[J].產業與科技論壇,2006,(2).
[4]黃煒.應用數學.北京:科學出版社,2008.